\qquad
\qquad Date: \qquad

Lab: ALUMINUM FOIL THICKNESS

Purpose: The purpose of this activity is to relate the size of an aluminum atom to the thickness of a piece of aluminum.

Procedure:

1. Mass a cylinder of aluminum metal.
2. Measure the volume of the cylinder by displacement
3. Obtain a piece of aluminum foil
4. Measure the length and width of the piece of aluminum foil to the nearest 0.1 cm .
5. Mass the piece of aluminum foil

Data:

A. Mass of metal cylinder	16.02 g
B. Volume of water in graduated cylinder	43.0 m L
C. Volume of water plus metal cylinder	49.0 mL
D. Volume of metal cylinder (C-B)	15.0 cm
E. Length of aluminum	14.5 cm
F. Width of aluminum	1.00 g
G. Mass of aluminum foil	
H. Density of aluminum (A/D)	
I. Volume of foil (G/H)	
J. Height of foil (V = L x W x H)	
K. Moles of aluminum in foil (convert G to moles)	
L. Atoms of aluminum foil	
M. Atoms thick of Aluminum foil	

Calculations:

1. Determine the density of aluminum. Record in H.

$$
\mathbf{D}=\mathbf{M}(\mathbf{A}) / \mathbf{V}(\mathrm{D})
$$

2. Find the volume of the foil and record it in I.

$$
\mathbf{V}=\mathbf{M}(\mathbf{G}) / \mathbf{D}(\mathbf{H})
$$

3. Find the height (thickness) of the foil and record it in J.

$$
\mathbf{V}=\mathbf{l} \times \mathbf{x} \times h
$$

Analysis:

One aluminum atom is $2.5 \times 10^{-8} \mathrm{~cm}$ thick. Find the thickness of the foil in atoms.
Number of
height (J) $\quad \mathrm{x} \frac{1 \text { atom }}{2.5 \times 10^{-8} \mathrm{~cm}}$

Calculate the number of moles of aluminum and the total number of atoms of aluminum in your piece of aluminum foil.

Conclusion:

